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a b s t r a c t

In this paper, we study N-player Colonel Blotto games with incomplete information about battlefield
valuations. Such games arise in job markets, research and development, electoral competition, security
analysis, and conflict resolution. For M ≥ N + 1 battlefields, we identify a Bayes–Nash equilibrium
in which the resource allocation to a given battlefield is strictly monotone in the valuation of that
battlefield. We also explore extensions such as heterogeneous budgets, the case M ≤ N , full-support
type distributions, and network games.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In a Colonel Blotto game, players simultaneously and indepen-
ently allocate their endowments of a resource across a set of
attlefields. The player that deploys the largest amount of the
esource to a given battlefield scores a win and enjoys a gain
n utility equivalent to her valuation of that battlefield. Thus,
player’s utility corresponds to the sum of the valuations of

ll battlefields won by the player. Colonel Blotto games natu-
ally arise in a large number of applied settings, such as in job
arkets, R&D, electoral competition, security analysis, and con-

lict resolution. Colonel Blotto games also have been among the
irst games seriously studied in the theoretical literature [7–9].
hile the case of complete information is fairly well understood

17,20,21,25,26,29], progress has been more limited in the case of
ncomplete information, with very few exceptions [1,3,13,15,16].

This paper studies N-player Colonel Blotto games with M bat-
lefields and multidimensional incomplete information regarding
attlefield valuations. We assume that valuation vectors are pri-
ate information and independently distributed across players.
nly the ex-ante distribution of valuation vectors is common
nowledge. Each player maximizes the expected sum of valua-
ions of battlefields won, where resource budgets are fixed and
omogeneous across players, and where unused resources do not
ave any positive value. In the case where the number of battle-
ields strictly exceeds the number of players, i.e., for M ≥ N + 1,

∗ Correspondence to: Schönberggasse 1, 8001 Zurich, Switzerland.
E-mail addresses: christian.ewerhart@econ.uzh.ch (C. Ewerhart),

ovenock@chapman.edu (D. Kovenock).
https://doi.org/10.1016/j.orl.2021.03.010
0167-6377/© 2021 Elsevier B.V. All rights reserved.
we identify a Bayes–Nash equilibrium in which any player’s re-
source allocation to a battlefield is strictly monotone increasing in
her valuation of that battlefield. The construction of equilibria for
more than two players relies on a new distributional assumption.
Specifically, we exploit the particular properties of generalized
Dirichlet and Liouville distributions in finite-dimensional vector
spaces equipped with an Lp-norm.

We also explore several extensions. First, we touch upon the
case of heterogeneous budgets. While a complete solution is
beyond the scope of the present paper, we find new classes of
Bayes–Nash equilibria. In one example, a player with a substan-
tially larger budget outbids all of her opponents on (M − 1)
battlefields she values most, while the opponents each bid solely
on a single battlefield. Second, we seek equilibria in the case
excluded by our assumptions so far, i.e., for the case M ≤ N .
We find equilibria in the “crowded” case where the number
of battlefields is sufficiently small compared to the number of
players. These equilibria, in which all players bid on a respective
highest-valuation battlefield only, are shown to exist under quite
flexible distributional assumptions. Specifically, we assume that
any player’s distribution of valuation vectors is invariant under
arbitrary permutations of the battlefields and gives probability
zero to valuation ties across battlefields. Third, we study distribu-
tions with full support, which allows us to extend existing results.
Fourth and finally, we discuss network games in which players
may be active only in a subset of all battlefields.

While the Colonel Blotto game has a certain similarity with a
single-unit all-pay auction [5,6,12,19,30], our analysis draws es-
pecially on three prior contributions. Kovenock and Roberson [16]
presented an example with two players and three battlefields.
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rivate valuations of battlefields are drawn independently from a
niform distribution over a two-dimensional surface in Euclidean
pace. Since, in that case, marginal type distributions are uni-
orm, the budget constraint may be kept by bidding the squared
aluation on each battlefield. It turns out that this strategy con-
titutes a symmetric Bayes–Nash equilibrium. Hortala-Vallve [13]
olved the case N = M = 2, where bidding exclusively on
one of the highest-valuation battlefields is a weakly dominant
strategy. Akyol [3] noted that rescaling a valuation vector by a
positive factor does not affect a player’s best response set. He
offered an extension to any number of battlefields by assuming
that individual battlefield valuations follow a generalized gamma
distribution. However, he still focused on the case of two players,
which may be restrictive, e.g., in a job market environment. The
analysis of the present paper subsumes all results obtained in
prior work. In addition, we construct equilibria with more than
two players, where we use novel distributional assumptions to
deal with the case M ≥ N + 1. Thus, the present paper goes
beyond existing work by considering a wider class of examples of
multi-player Colonel Blotto games with incomplete information
about valuations.

There are also a number of less closely related papers. In a
model with N players and private information about budgets,
Adamo and Matros [1] identified a symmetric monotone Bayes–
Nash equilibrium. A higher budget allows a player to scale up
her resource allocation, while the share of the resource allo-
cated to individual battlefields remains constant. This leads to
a tractable one-dimensional problem. Powell [23] studied a sig-
naling game with private information about vulnerability. Next,
in a model of price setting with menu costs for multiproduct
firms, Alvarez and Lippi [4] made use of the marginals of a
uniform distribution on a higher-dimensional Euclidean sphere
that represents a vector of price changes. They, however, studied
the problem of a monopolist, i.e., there is no Colonel Blotto game.
Tang and Zhang [28] considered mixed extensions of normal-
form games where mixed strategies correspond to points on a
Euclidean sphere. Paarporn et al. [22] assumed one-sided in-
complete information in a Colonel Blotto game with a finite
state space. In our discussion of generalized Dirichlet and Liou-
ville distributions, we follow Hashorva et al. [11] and Song and
Gupta [27]. See also Richter [24] and Ahmadi-Javid and Moeini
[2]. Gupta and Richards [10] offer an insightful historical account
of Dirichlet and Liouville distributions.

The rest of this paper is structured as follows. Section 2 intro-
duces the model. Section 3 presents the main result. Extensions
are discussed in Section 4. Section 5 concludes. An Appendix
offers formal detail omitted from the body of the paper.

2. The model

2.1. Set-up and notation

There are N ≥ 2 risk-neutral players, denoted by i ∈ {1, . . . ,
N}, and M ≥ 2 battlefields, denoted by j ∈ {1, . . . ,M}. Each
player is endowed with an identical budget of a perfectly divis-
ible resource. For convenience, we normalize budgets to one. A
player’s resource allocation is a vector

b = (b1, . . . , bM ),

where bj ≥ 0 denotes the amount of the resource allocated
to battlefield j. We call a resource allocation b = (b1, . . . , bM )
feasible if
M∑

bj ≤ 1.

j=1

419
Denote by B = BM the set of feasible resource allocations over M
battlefields.

Before deciding about the resource allocation, each player
privately learns her respective vector of battlefield valuations,

v = (v1, v2, . . . , vM ).

The vector v is commonly known to be drawn, independently
across players, from a given probability measure µ on (the Borel
subsets of) RM

+
, where R+ = [0,∞). Let V denote the support

of µ. Specific assumptions on µ and V will be imposed in the
statements of the subsequent results.

A strategy is a (measurable) mapping β : V → B. When
adhering to strategy β, type v’s resource allocation is

β(v) = (β1(v), . . . , βM (v)) ∈ B.

Any strategy of an opponent induces a probability measure over
feasible resource allocations. Therefore, given strategies for the
(N − 1) opponents, type v’s resource allocation translates into
a vector of winning probabilities, and hence, into an expected
payoff for type v.

The N players simultaneously and independently choose fea-
sible resource allocations. In each battlefield, the player that
allocates the largest amount of the resource wins. In the case of a
tie in battlefield j, each of the players that allocated the largest
amount of the resource to battlefield j wins in that battlefield
with equal probability. Each player’s payoff equals the sum of her
valuations of the battlefields won.

A strategy β∗ will be referred to as a symmetric Bayes–Nash
equilibrium strategy if, for any type realization v ∈ V , the resource
allocation β∗(v) maximizes the expected payoff of type v under
the assumption that the other (N−1) players individually adhere
to strategy β∗.

2.2. Heuristic discussion of the player’s problem

Suppose that all opponents of Player 1 adhere to strategy
β = β(v). Then, the marginal distribution of bids on each battle-
field j ∈ {1, . . . ,M} is identical across players i ∈ {2, . . . ,N}.
We denote the distribution function of this common probability
distribution by Gj(bj) = Pr(βj(v) ≤ bj). Provided there are no mass
points in the Gj, type v’s problem reads

max
(b1,...,bM )∈B

∑
j∈{1,...,M}

Fj(bj)vj, (1)

where, by independence of types across players, the cumulative
distribution function of the highest bid competing with Player 1’s
bid in battlefield j is given as

Fj(bj) = Gj(bj)N−1.

To grasp the nature of problem (1), suppose that its solution is
interior in RM

+
and characterized by first-order conditions, and

that Fj is continuously differentiable in an open neighborhood of
the optimal bid bj, for j ∈ {1, . . . ,M}, with a strictly declining
derivative fj. Then, the optimal allocation βbr(v) satisfies

fj(βbr
j (v))vj − λ(v) = 0,

for j ∈ {1, . . . ,M}, where λ(v) is the Lagrange parameter of the
budget constraint. Thus, provided that vj > 0, Player 1’s best
response is given by

βbr
j (v) = f −1

j

(
λ(v)
vj

)
,

here f −1
j denotes the inverse of fj, and λ(v) is implicitly charac-

terized by

f −1
(
λ(v)

)
+ · · · + f −1

(
λ(v)

)
= 1.
1 v1 M vM
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o solve for a symmetric Bayes–Nash equilibrium strategy means
dentifying a bid function β such that βbr

= β. Even under
he simplifying assumptions imposed above, the general solution
o this problem is not known. E.g., Hortala-Vallve and Llorente-
aguer [14] assumed N = 2 and M ∈ {2, 3, 6}, with valuation
ectors drawn from a uniform distribution on a discrete simplex.
hile they present an analytic solution for the case M = 2 (see

he next section), they resorted to numerical methods in the cases
= 3 and M = 6.

.3. Examples

We illustrate the set-up with the help of some examples.

xample 1 (Kovenock and Roberson [16]). Suppose that µ is the
niform distribution on the sphere segment

= {v ∈ R3
+

: (v1)
2
+ (v2)

2
+ (v3)

2
= 1}.

hen,
∗(v) = ((v1)2 , (v2)2 , (v3)2)

s a symmetric Bayes–Nash equilibrium strategy.

xample 2 (Hortala-Vallve [13]; Hortala-Vallve and Llorente-Saguer
[14]). Suppose that N = M = 2. Then, for any ~ ∈ [0, 1],

β∗(v) =

{ (1, 0) if v1 > v2
(~, 1 − ~) if v1 = v2
(0, 1) if v1 < v2

is weakly dominant, and hence, forms a symmetric Bayes–Nash
equilibrium strategy for any type distribution µ on R2

+
.

Example 3 (Akyol [3]). Suppose that N = 2, M ≥ 3, and that µ
is a generalized gamma distribution on RM

+
, with componentwise

independent density

φj(vj) =
M−1

(M−2)Γ (1/(M−1)) · v
−

M−3
M−2

j exp
(

−v
M−1
M−2
j

)
for j ∈ {1, . . . ,M}. Then,

β∗(v) =

⎛⎝ v

M−1
M−2
1∑M

j=1 v
M−1
M−2
j

, . . . ,
v

M−1
M−2
M∑M

j=1 v
M−1
M−2
j

⎞⎠
s a symmetric Bayes–Nash equilibrium strategy.

. The case of N players

.1. Distributional assumptions

For M ≥ 1 and p ≥ 1, we equip RM with the Lp-norm

y∥p =
(
|y1|p + · · · + |yM |

p)1/p .
ithin the resulting normed space, we consider the sphere seg-
ent
M,p

= {v ∈ RM
+

: ∥v∥p = 1}

f vectors of Lp-norm one in RM
+
. The set VM,p is a bordered

M − 1)-dimensional manifold embedded in RM . Fig. 1 illustrates
his fact for M = p = 3.

We parameterize the manifold VM,p using the variables v1, . . . ,

M−1 and the relationship vM =

(
1 −

∑M−1
j=1 v

p
j

)1/p
. A probability

easure with support VM,p may then be specified as follows.
420
Fig. 1. The sphere segment VM,p .

Definition 1 (Hashorva et al. [11]). The Lp-norm Dirichlet distri-
bution with parameter α > 0 is defined by the density

ψ(v1, . . . , vM−1)

=
pM−1Γ (Mα)
Γ (α)M

⎛⎝1 −

M−1∑
j=1

v
p
j

⎞⎠α−1

·

M−1∏
j=1

v
pα−1
j ,

where
∑M−1

j=1 v
p
j ≤ 1, and vj > 0 for j ∈ {1, . . . ,M}.

In the special case p = 1, Definition 1 characterizes the classic
Dirichlet distribution on the simplex of dimension (M − 1). For
general p, the distribution is derived from the Dirichlet distribu-
tion on the simplex by taking each component of the random
vector to the power of 1/p. The distribution characterized by
Definition 1 is, therefore, invariant under arbitrary permutations
of the battlefields. Moreover, random variables following this dis-
tribution are easy to construct numerically [11]. For αp = 1, the
Lp-norm Dirichlet distribution with parameter α > 0 corresponds
to the uniform distribution on the sphere segment [27].

3.2. Statement of the main result

The main result of the present paper is the following.

Proposition 1. Suppose that M ≥ N + 1, and that each player’s
vector of battlefield valuations is drawn independently from an Lp-
norm Dirichlet distribution with parameter α, where p =

M−1
M−N and

α =
1

M−1 . Then, the bid strategy defined through
∗(v) = ((v1)p , . . . , (vM)p),

is a symmetric Bayes–Nash equilibrium strategy.

Proof. See the next section. □

Proposition 1 extends existing equilibrium characterizations
for Colonel Blotto games with incomplete information about val-
uations. In particular, Example 1 is contained as a special case
where N = 2 and M = 3. Extensions covering Examples 2 and 3
will be presented later in the paper.

3.3. Proof of Proposition 1

Suppose that each player i ∈ {2, . . . ,N} adheres to strategy
β∗. By assumption, we have (M − 1)α = 1. Hence, by Lemma
A.1 in the Appendix, the marginal distribution of valuations on
any battlefield j ∈ {1, . . . ,M} is a power function distribution
with density hj

(
vj

)
= pαvpα−1

j for vj ∈ (0, 1), and cumulative
distribution function H (v ) = v

pα . Clearly, using the notation
j j j
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ntroduced above, Gj(bj) = Hj(b
1/p
j ) = bαj . Therefore, Fj(bj) =

α(N−1)
j , with density

j(bj) = α(N − 1)bα(N−1)−1
j = α(N − 1)b−1/p

j .

he inverse of fj is given by

−1
j (x) =

(
x

α(N−1)

)−p
.

s before, let λ(v) denote the shadow cost of the budget con-
traint in Player 1’s problem. Then, as discussed above,

br
j (v) = f −1

j

(
λ(v)
vj

)
=

(
α(N−1)
λ(v)

)p
v
p
j .

Clearly, in an optimal allocation, no resources remain unused,
i.e., b1 + · · · + bM = 1. Hence,

λ(v) = α(N − 1)

⎛⎝ M∑
j=1

v
p
j

⎞⎠1/p

= α(N − 1).

Thus, it is indeed optimal for type v of Player 1 to allocate the
esource as prescribed by the symmetric equilibrium strategy,
.e., βbr

= β∗. Obviously, the same is true for players i ∈

2, . . . ,N}. This concludes the proof of Proposition 1.

. Extensions

.1. Heterogeneous budgets

In this section, we explore the case of heterogeneous budgets.
otably, this case is strategically equivalent to assuming the same
iased contest technology in all battlefields. While symmetry
cross players is lost, the set-up and equilibrium notion of Bayes–
ash equilibrium generalize in a straightforward way. In fact,
ompared to the development so far, we drop functional assump-
ions and allow for heterogeneity of type distributions across
layers. A simple observation is the following.

roposition 2. Suppose that N ≥ 2 and M ≥ 1, and that Player 1’s
udget is more than M times as large as any other player’s budget.
hen, it is a weakly dominant strategy for Player 1 to distribute the
esource evenly across all battlefields.

roof. Suppose that Player 1 splits her budget evenly across all
attlefields j ∈ {1, . . . ,M}. Then, Player 1 wins any battlefield j
ven if all of her opponents concentrate their entire budget on
attlefield j. □

The situation becomes more interesting if players’ relative
ositions are less definite. As the complete analysis of this case
oes beyond the scope of the present paper, we confine ourselves
o the presentation of an example.

xample 4. Suppose that N = 2 and M ≥ 2. Suppose also
hat type distributions are invariant under arbitrary permutations
f the battlefields and give probability zero to valuation ties
cross battlefields. Suppose, finally, that the budget of Player 1
s X ∈ (M −

1
2 ,M], while the budget of Player 2 is one. Then, the

following is a Bayes–Nash equilibrium. For ε > 0 small enough,
layer 1 places bids of (1 + ε) each on (M − 1) battlefields
he values most, and a bid corresponding to the residual of her
udget, X − (1+ ε)(M − 1) ∈ ( 12 , 1), on the remaining battlefield.
layer 2 bids one on a battlefield she values most.

The equilibrium property is easy to check. Sticking to her
trategy, Player 1 certainly wins her preferred (M−1) battlefields
n which she places bids strictly exceeding one. Moreover, with
robably M−1 , she also wins the remaining battlefield. Clearly,
M

421
Player 1 cannot do better than this if X < M . But her strategy
is optimal even in the borderline case X = M . Indeed, in that
case, splitting the budget evenly would win (M − 1) randomly
determined battlefields with probability one, and the remaining
battlefield with probability 1

2 ≤
M−1
M . Thus, Player 1’s strategy

is a best response. Player 2 is unable to win two battlefields,
but she may win her preferred battlefield with probability 1

M .
herefore, also Player 2’s strategy is optimal, and the strategy
rofile described above is indeed a Bayes–Nash equilibrium.

.2. The case M ≤ N

Next, we discuss the case where the number of players is
eakly larger than the number of battlefields. As in the previous
ection, distributional assumptions are kept flexible.

roposition 3. Suppose that N ≥ 2 and that

≤ M∗(N) ≡
1

1 − (1/N)1/(N−1) .

Suppose also that each player’s distribution of valuation vectors is
invariant under arbitrary permutations of the battlefields and gives
probability zero to valuation ties across battlefields. Then, bidding
one on any of the highest-valuation battlefields is a symmetric
Bayes–Nash equilibrium strategy. Conversely, if M > M∗(N), then
there exists a distribution of types such that bidding exclusively
on a highest-valuation battlefield does not constitute a symmetric
Bayes–Nash equilibrium strategy.

Proof. See Appendix. □

Proposition 3 gives a sharp threshold such that bidding
exclusively on a highest-valuation battlefield constitutes a sym-
metric Bayes–Nash equilibrium strategy. Lemma A.2(i) in the
Appendix shows that, for N ≥ 2, the upper bound M∗(N)
satisfies M∗(N) ≤ N , which justifies the heading of this section.
Compared to Proposition 1, the distributional assumptions in
Proposition 3 are more flexible. Indeed, the only requirement is
that each player’s type distribution is invariant under arbitrary
permutations of the battlefields and gives probability zero to
valuation ties across battlefields. It should also be noted that
Proposition 3 allows for type distributions that are heterogeneous
across players.

In Example 2, which corresponds to the case N = M = 2,
idding exclusively on one of the highest-valuation battlefields
s not only a symmetric Bayes–Nash equilibrium strategy, but
ven weakly dominant [13,14]. Indeed, because there are two
layers only, a bid tie in one battlefield implies a tie in the
ther battlefield via players’ budget constraints. Therefore, each
layer wins precisely one battlefield in expectation, irrespective
f the strategies chosen. Moreover, by bidding exclusively on
ny of the battlefields she values most, a player maximizes the
robability of winning that battlefield rather than a battlefield
ith a potentially strictly lower valuation. This is so because,
egardless of the opponent’s strategy, the probability of win-
ing the battlefield on which the bid is placed is at least as
arge as the probability of winning the other battlefield. Thus,
player never “regrets” having placed a bid of one on any of
er highest-valuation battlefields. This argument goes through
ven under distributional assumptions that are more flexible than
hose imposed in Proposition 3.

However, as the following example shows, bidding exclusively
n one of the highest-valuation battlefields is not necessarily a
eakly dominant strategy in the case of more than two players.
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xample 5. Suppose that N ≥ 3 and M ≥ 2. Suppose also
hat Player 1’s type v = (v1, . . . , vM ) satisfies v1 > 0 and
2 ∈ ( 1

N−1v1, v1). Suppose, finally, that players j = 2, . . . ,N all
id one on Battlefield 1. Then, Player 1’s expected payoff from
idding exclusively on Battlefield 1 is 1

N · (v1 +· · ·+vM ), whereas
he expected payoff from bidding exclusively on Battlefield 2 is
trictly higher, viz. v2 +

1
N · (v3 + · · · + vM ).

Thus, because of the possibility of several competing bids
being concentrated on a single battlefield, bidding solely on a
highest-valuation battlefield is no longer a weakly dominant
strategy in the case of N ≥ 3 players.

Next, we study what happens in “crowded” Colonel Blotto
games, i.e., if the number of players N is much larger than
he number of battlefields M . We show in the Appendix that

∗(N) → ∞ as N grows above all bounds. Therefore, the as-
umptions of Proposition 3 may be satisfied for any given number
f battlefields M ≥ 2. We arrive at the following observation.

orollary 1. Let the number of battlefields M ≥ 2 be fixed. Suppose
lso that each player’s distribution of valuation vectors is invariant
nder arbitrary permutations of the battlefields and gives probability
ero to valuation ties. Then, for any sufficiently large N, bidding ex-
lusively on any of the highest-valuation battlefields is a symmetric
ayes–Nash equilibrium strategy.

roof. See the text above. □

.3. Alternative distributional assumptions

In this section, we extend our results for M ≥ N + 1 to type
distributions with full support on RM

+
. For the construction, we

exploit the fact that a type’s set of optimal resource allocations
does not change if all battlefield valuations are multiplied by
the same positive constant. We obtain the following extension of
Proposition 1 to generalized Liouville distributions.

Proposition 4. Suppose that N ≥ 2 and M ≥ N + 1. For i ∈

{1, . . . ,N}, let player i’s distribution of types on RM
+

be given by a
density

ηi(v) = ci · ρi

⎛⎝ M∑
j=1

v
M−1
M−N
j

⎞⎠ ·

⎛⎝ M∏
j=1

vj

⎞⎠ 1
M−N −1

,

where ci > 0 is a constant, and ρi is an arbitrary positive (measur-
able) function such that∫

∞

0
ρi(r)r

1
M−1 dr < ∞.

Then,

β∗(v) =

⎛⎝ v

M−1
M−N
1∑M

j=1v
M−1
M−N
j

, . . . ,
v

M−1
M−N
M∑M

j=1v
M−1
M−N
j

⎞⎠
s a symmetric Bayes–Nash equilibrium strategy.

roof. For any given valuation vector v ̸= 0, the solution set
o problem (1) remains unchanged if the objective function is
escaled, i.e., multiplied with a positive constant. Therefore, for
=

M−1
M−N , we may instead consider the problem

max
b1,...,bM )∈B

∑
j∈{1,...,M}

Fj(bj )̂vj,

where v̂j = vj/∥v∥p. By Hashorva et al. ([11], Thm. 1), the vector
v = (̂v1, . . . , v̂M ) ∈ VM,p follows an Lp-norm Dirichlet distribution
with parameter α =

1
M−1 . The claim is now immediate from

roposition 1. □
422
Proposition 4 extends Akyol’s ([3], Prop. 8) main equilibrium
characterization to the case of more than two players.

As explained by Hashorva et al. [11], there are numerous
examples of distributions that are consistent with the assump-
tions of Proposition 4, including generalized Dirichlet, Kotz Type
I through III, Pearson Type VII, Kummer-Beta, and Kummer-
Gamma. The generalized beta distribution assumed in Example 3,
for example, is a special case of the Kotz Type I distribution. Using
Proposition 4, we may generalize the example to the multi-player
case as follows.

Example 6. Suppose that N ≥ 2 andM ≥ N+1. Suppose that each
player’s battlefield valuation vj is drawn independently, across
both players and battlefields, from a generalized gamma distribu-
tion with density p

Γ (α)v
αp−1

j exp(−vpj ), where α and p are specified
as in the proof above. Then, the conclusion of Proposition 4 holds
true.

Given that the objective function in problem (1) is homoge-
neous of degree one in v, Proposition 4 is technically a straightfor-
ward extension of Proposition 1. However, there are noteworthy
implications for expected payoffs and efficiency. Under the as-
sumptions of Proposition 1, the expected payoff of a player does
not depend on the type realization. Indeed, the equilibrium payoff
of type v ∈ V is given by

Π∗
=

M∑
j=1

Fj
(
β∗

j (v)
)
· vj =

M∑
j=1

v
p
j = 1.

Thus, differences in information rents [18] are seen to net out
across battlefields. Under the assumptions of Proposition 4, how-
ever, equilibrium payoffs are homogeneous of degree one in ∥v∥p.
Therefore, types with a larger (smaller) Lp-norm of the valuation
vector enjoy a higher (smaller) equilibrium payoff. This difference
in payoffs is also reflected in the efficiency analysis. Clearly, the
symmetric equilibrium strategy identified in Proposition 1 has
the property that the amount of the resource deployed in any
given battlefield increases strictly in the player’s valuation of that
battlefield. Thus, the identified Bayes–Nash equilibrium leads to
an efficient selection of battlefield winners, just as in the symmet-
ric single-unit all-pay auction with independent types. However,
under the assumption of Proposition 4, the Colonel Blotto game
is not efficient because the equilibrium allocation maximizes v̂j
rather than vj in each battlefield j.

4.4. Networks

As a final extension, we consider networks of Colonel Blotto
games with N = N ′

· K players and M = M ′
· K battlefields,

where K ≥ 1 is an integer. Each player is restricted to be active
in a given subset of M ′ battlefields, and draws a type, e.g., from
the Lp-norm Dirichlet distribution with parameter α, where p and
α are set as in Proposition 1. For example, any triangulation of
a globe, say, may be understood as a network of Colonel Blotto
games, where each triangle represents a player, and each edge
shared with a neighboring triangle represents a battlefield. In this
case, N ′

= 2, M ′
= 3, and K ≥ 2. Fig. 2(a) illustrates this for

K = 5. Another example is a cube where each side represents
a player, and each adjacent node represents a battlefield. In that
case, N ′

= 3, M ′
= 4, and K = 2. See Fig. 2(b) for illustration.

Examples exist for any combination of number of players N ′

and number of battlefields M ′ for which either Proposition 1 or
Proposition 3 characterizes a symmetric Bayes–Nash equilibrium
strategy, and for any K ≥ 2. This can be easily seen by inductively
assigning to each player i ∈ {1, . . . ,N} precisely M ′ battlefields
in such a way that no battlefield is assigned to more than N ′

players. Indeed, the result of the construction is what is usually
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Fig. 2. Networks of Colonel Blotto games.

eferred to as a biregular bipartite graph, i.e., a binary relation
etween the set of players {1, . . . ,N} and the set of battlefields
1, . . . ,M} such that preciselyM ′ battlefields are assigned to each
layer, and each battlefield is assigned to precisely N ′ players,
here obviously N · M ′

= M · N ′. The equilibrium analysis
xtends in a straightforward way. Indeed, it suffices to note that a
layer’s best response depends only on the marginal distribution
f competing bids in each battlefield, regardless of the identity
f her opponents. Intuitively speaking, the player “does not care”
hether she is facing, in any two distinct battlefields, the same
pponent or two different opponents.

. Concluding remark

The methods of this paper may also be used to construct new
lasses of mixed-strategy equilibria in two-player Colonel Blotto
ames with complete information, extending the construction of
he disc solution [8,9,21,29]. Specifically, one considers an Lp-
orm hemisphere HM,p in R+ × RM−1, where M ≥ 3 and p =

− 1. On HM,p, one defines a uniform distribution in analogy to
efinition 1 with α = 1/(M − 1) [11,27]. Then, a random
ector from HM,p is projected on the hyperplane {0}×RM−1. The
mage of HM,p under the projection is an (M − 1)-dimensional
all in the Lp-norm. It should be noted that the image is not
otation-invariant unless M = 3. Still, connecting all the vertices
f the (M − 1) dimensional cube {0} × [−1, 1]M−1 with the
rojection point divides the cube into 2(M − 1) hyperpyramids.
s the (M − 1)-dimensional volume of any such hyperpyramid
s proportional to its height, the volumes are uniformly dis-
ributed by Lemma A.1 in the Appendix, and may be used to
etermine a player’s share of the budget allocated to a battle-
ield. Thus, we indeed obtain a Nash equilibrium in a two-player
olonel Blotto game with 2(M − 1) battlefields and complete
nformation. The resulting equilibrium bids perfectly negatively
orrelate within pairs of battlefields, as discussed in Laslier and
icard [21]. Notwithstanding, for M ≥ 4, they differ from existing
onstructions.

cknowledgments

This work has benefited from the valuable comments by an
nonymous referee. For useful conversations, we are indebted
o Vijay Krishna and Meg Meyer. Christian Ewerhart thanks the
conomic Science Institute (ESI) at Chapman University for its
enerous hospitality during the fall term 2019.

ppendix

This appendix contains auxiliary results and the proof of
roposition 3.
The proof of Proposition 1 relies on the following charac-

erization of the marginal distributions of the Lp-norm Dirichlet
istribution, for which we could not find a suitable reference.
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emma A.1 (Marginal Density). The univariate marginal densities of
he Lp-norm Dirichlet distribution with parameter α are given as

j(vj) =
pΓ (Mα)

Γ (α)Γ ((M−1)α)

(
1 − v

p
j

)(M−1)α−1
v
pα−1
j ,

where vj ∈ (0, 1) and j ∈ {1, . . . ,M}. In particular, if (M−1)α = 1,
then the univariate marginal is a power function distribution on
[0, 1].

Proof. As explained in the body of the paper, the Lp-norm Dirich-
let distribution is invariant with respect to permutations of the
components of the random vector. It therefore suffices to prove
the claim for j = 1. To compute the univariate marginal distri-
bution with respect to v1, we proceed inductively, following the
steps of the proof of Song and Gupta ([27], Thm. 2.1). To this end,
fix v1, . . . , vM−2 ∈ (0, 1) such that

∑M−2
j=1 v

p
j < 1, and let

AM−1 =

⎛⎝1 −

M−2∑
j=1

v
p
j

⎞⎠1/p

> 0.

Then,∫ AM−1

0
ψ(v1, . . . , vM−1)dvM−1

=
pM−1Γ (Mα)
Γ (α)M

⎛⎝M−2∏
j=1

v
pα−1
j

⎞⎠
·

∫ AM−1

0

(
Ap
M−1 − v

p
M−1

)α−1
v
pα−1
M−1 dvM−1.

Using the substitution ṽM−1 = vM−1/AM−1, it follows that∫ AM−1

0
ψ(v1, . . . , vM−1)dvM−1

=
pM−1Γ (Mα)
Γ (α)M

·

⎛⎝M−2∏
j=1

v
pα−1
j

⎞⎠ · Ap(α−1)+pα
M−1

·

∫ 1

0

(
1 − ṽ

p
M−1

)α−1
ṽ
pα−1
M−1 d̃vM−1  

=
Γ (α)2
Γ (2α)p

=
pM−2Γ (Mα)
Γ (α)M−2Γ (2α)

·

⎛⎝M−2∏
j=1

v
pα−1
j

⎞⎠ ·

⎛⎝1 −

M−2∑
j=1

v
p
j

⎞⎠2α−1

.

n a second step, we find that

AM−2

0

∫ AM−1

0
ψ(v1, . . . , vM−1)dvM−1dvM−2

=
pM−2Γ (Mα)
Γ (α)M−2Γ (2α)

·

⎛⎝M−3∏
j=1

v
pα−1
j

⎞⎠ · Ap(2α−1)+pα
M−2

·

∫ 1

0

(
1 − ṽ

p
M−2

)2α−1
· ṽ

pα−1
M−2 d̃vM−2  

=
Γ (α)Γ (2α)
Γ (3α)p

=
pM−3Γ (Mα)
Γ (α)M−3Γ (3α)

·

⎛⎝M−3∏
j=1

v
pα−1
j

⎞⎠ ·

⎛⎝1 −

M−3∑
j=1

v
p
j

⎞⎠3α−1

.
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fter a total of (M − 2) iterations, we arrive at∫ A2

0
. . .

∫ AM−1

0
ψ(v1, . . . , vM−1)dvM−1 . . . dv2

=
pΓ (Mα)

Γ (α)Γ ((M−1)α)v
pα−1
1

(
1 − v

p
1

)(M−1)α−1
,

hich proves the lemma. □

roof of Proposition 3.
Suppose that all opponents of Player 1 adhere to the candidate

quilibrium strategy, i.e., bid the entire budget on one of the
ighest-valuation battlefields. Suppose first that Player 1 likewise
ollows the candidate equilibrium strategy. Then, Player 1 wins
er selected battlefield with probability 1

n+1 if precisely n other
layers bid on it, where n ∈ {0, . . . ,N − 1}. Moreover, Player 1
ins any other battlefield with probability 1

N if no other player
ids on it. Denote by v(j) Player 1’s jth highest valuation, where
∈ {1, . . . ,M}. Then, Player 1’s expected payoff from following
he candidate strategy is

∗
=

N−1∑
n=0

v(1)
n+1

(N−1
n

) ( 1
M

)n (
1 −

1
M

)N−1−n

+

M∑
j=2

v(j)
N

(
1 −

1
M

)N−1

=
v(1)
N

N−1∑
n=0

( N
n+1

) ( 1
M

)n (
1 −

1
M

)N−1−n

+
1
N

(
1 −

1
M

)N−1
M∑
j=2

v(j)

=
v(1)M
N

N∑
n=1

(N
n

) ( 1
M

)n (
1 −

1
M

)N−n

+
1
N

(
1 −

1
M

)N−1
M∑
j=2

v(j)

=
v(1)M
N

{
1 −

(
1 −

1
M

)N}
+

1
N

(
1 −

1
M

)N−1
M∑
j=2

v(j).

Suppose next that Player 1 deviates. For the winning probability
of a bid, it matters only if the bid is zero, one, or strictly be-
tween zero and one. Moreover, winning probabilities are weakly
increasing in the bid. Therefore, it suffices to consider the specific
deviation that distributes the budget evenly over all M battle-
fields. In that case, Player 1 wins a battlefield j if and only if no
other player bids on that battlefield. Hence, the resulting payoff
from this deviation is

Πd
=

M∑
j=1

(
1 −

1
M

)N−1
vj =

(
1 −

1
M

)N−1
M∑
j=1

v(j).

We have Π∗
≥ Πd if and only if

M
N

{
1 −

(
1 −

1
M

)N}
v(1)

≥
(
1 −

1
M

)N−1
v(1) +

(
1 −

1
N

) (
1 −

1
M

)N−1
M∑
j=2

v(j).

For this to hold for any distribution of types satisfying the as-
sumptions imposed in the statement of the proposition, it is
necessary and sufficient that

M
N

{
1 −

(
1 −

1
M

)N}
≥

(
1 −

1
M

)N−1
+

(
1 −

1
N

) (
1 −

1
M

)N−1
(M − 1).
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This, however, is equivalent to 1
N ≥

(
1 −

1
M

)N−1
, which in turn is

equivalent to M ≤ M∗(N). This completes the proof. □

The following lemma collects properties of the threshold
M∗(N) defined in the statement of Proposition 3.

Lemma A.2 (Properties of M∗(N)).
(i) N ≥ 2 implies M∗(N) ≤ N.
(ii) limN→∞ M∗(N) = ∞.

Proof. (i) A straightforward calculation shows that M∗(N) ≤

N is equivalent to
(
1 −

1
N

)N−1
≥

1
N , which in turn follows

from Bernoulli’s inequality. (ii) It suffices to recall that limN→∞
N√N = 1. □
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